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A general expression for the stress function in the plastic region of an 
orthotropic body is presented. The so-called “generalized complex vari- 
ables” are introduced. They are similar to those introduced by Lekhnits- 
kii for elastic materials [ 1.2 I. A condition for this function to be 
real is derived. Based on this condition inverse problems can be solved. 
As illustrative examples some particular cases of states of stress are 
investigated. A comparison is made between the elastic and plastic com- 
plex parameters. An attempt is also made to establish a connection be- 
tween the plastic and elastic stress functions. 

1. Consider a homogeneous ideally plastic orthotropic body. The co- 
ordinate axes X, y, I are directed along the principal directions of 
orthotropy. The stress components ox, uy, rxy satisfy the following equi- 
librium conditions: 

(1.1) 

and the von Mises-Hill [3 1 plasticity condition for an orthotropic body 

(bx - 6J2 
1 _ c + 4~2,~ = 4T2 (---<c<l) (1.2) 

where c depends on the anisotropic material constants; T is the yield 
stress in shear relative to the X-, y-axes. For c = 0 we obtain a well- 
known von Mises plasticity condition for an isotropic body. 

We introduce the stress function F as follows: 

5 X -2T v7=7’;, 
YL 

o,=2Tvl-c!?!, vXU=-2TJf1--?5 
axay (1.3) 

The equilibrium conditions are thus satisfied identically, and for 
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the determination of F there remains the following equation: 

D2DlF&&F = 1 
where 

L+L-p,L=(&/-Pk) -$, 
a!! 8X 82, 

pk=#-Jc+ ib/l_ 

and the *generalized complex variables8 are determined by 

‘k = 5 + PkY ;k = r + rk?, (k = 1, 2) 

(k=1,2) 

(1.4) 

(1.5) 

- -- 
Since function F is real, (1.4) can be written as ~~~~F~~~~F = 1 of 

~D2z”lF 1 = 1 and thus 

D,D# = exp [--- i Q] (1.6) 

where 6 = 8(z,, z2; Yl, T2) is an arbitrary real function. 

The general solution of (1.6) is given by 

Here and in the sequel the integration is performed from fixed values 

of 7& L%2* to arbitrary values Tr, Y2. 

F,(Q) and F2(z2) are arbitrary analytic functions of their arguments; 

p = const. 

The following relationship exists between the function 8 and the angle 
a formed by slip lines with the x-axis at each point of a Plastic region: 

For the isotropic case e =e 0. 

2. From the physical considerations it follows that only real func- 
tions are admissible. 

Theore& I. The necessary and sufficient condition for a function 

F(zl, z2; Yl, Y2) to be real is 

a‘Wie _ _ _ a2,i@ 

az,az, az,azz 
(2.1) 

Proof. Operating on both sides of the identity F ES 7by 
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and taking into account (1.7). results in (2.1) being a necessary condi- 
tion. To show that (2.1) is also a sufficient condition we notice that 
from (2.1) it follows that 

and thus 

a4F = a4F 
- - -- 

azlazzazlazz az,a?&,azz 

where $(tk) and $A((zA) (k = 1, 2) are analytic functions of their argu- 
ments. Because the function F is defined by Formula (l.?), within arbi- 
trary analytic functions. these functions can be selected in such a way 

that F I F’. 

Equation (2.11 can be written in Cartesian coordinates as follows: 

COSfJ 
( 

!?&!?!&2~ s z 
> 

+ 

+ sin f) (- 2 v’& + (z)” - (‘!$-)“) = O 

and in polar coordinates (r, 4) 

(cos8cos2~-_1/2-_inesin2~) [g-f $?$---+ ?!&) + 

+ (cos 0 sin 2q + 1/l - C sin fj cos 2~) 
( 
?_ !!L -L a2e 
r2 i3cp 

+ 
r araT > 

+(sin~sin2~-~l-~cos~cos2~)LaLa~+ 
r ar acp 

+ (sin e cos 2~ + 1/l - c cos 0 sin 2~) L !?L ’ 
[+ (aq) -(%)2]zo 

betting c = 0 in (2.2) and (2.3) we obtain the corresponding condi- 

tions for the isotropic case [ 4 1. Some other conditions can be specified 

(2.3) 

(2.3) 

for which the function F is real, e.g. such as those proposed in [4 I . 

Theorem 2. A particular solution of (2.21, 8 = 8(x, y), which does 
not contain arbitrary parameters, determines the stress components to 
within a constant hydrostatic pressure. 

Proof. If 8 = 8(x, y) is selected then the real function F is deter- 
mined by (1.7) within an additive term p(z* + y*) which corresponds to a 
uniform hydrostatic pressure p. 

y*)l = 0. The theorem is proved. 
For it is easy to see that D,D,[p(x* + 

Note 1. If 8 = 8(x, y) represents a solution of (2.2) then 
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& = - %G- x, y) and yii = - 8(x, - y) are also solutions of (2.2). 

Conclusion. If 8 = 6(x, y) satisfies (2.2) then $= %f- x, - y) also 
satisfies (2.2). 

3. The complex parameters pk(k = 1, 2) characterize the anisotropy of 
the material. It is of interest to compare the elastic constants pk in 
[ 1,2 ] with the parameters pk introduced in this work. In [ 1 I it was de- 

monstrated that pk cannot be real. The same is true for the case of 
plastic anisotropy. For if pk were real then from (1.5) it follows that 
c > 1, but, as it is known from [3 1 , the parameter c varies in an open 
interval (- 00, 1). Hence the case c 2 1 is void of any physical meaning. 

Let now pk = ak + iflk; ak and & are real, then for - 00 <c 3 0, ak= 0, 
pk = 4 (1 - C) 5 d - C, i.e. the parameters pk are pure imaginary, and 
for 0 < c < 1, ak = & d c, ,Bk = d (1 - c), thus @k ‘is always positive. 

Moreover. the equality ~1 = ~2 for th e plastic case holds good only 
for isotropic materials. In the elastic case the equality of these para- 
meters is possible for anisotropic materials as Well. 

In (1 ] some combinations of pl and pZ are shown which are real for 
orthotropic cases. Below we present these combinations together with 
similar combinations for plastic regions. 

Elastic region Plastic region 

fl1p2 
- -1 

- i @I$_ IL2) iv 2P12 + Pm + 2 

P 
2 Jfi- 

2xz 
-_c= 

I’ I1 T 1/42” - X? 

EL?+ p2 - 2 (2e - 1) =2 
i 
l- 2x2z2 

x2 1 (4z” - X4, 

Since in [l ] the combinations of the complex parameters are given 
for the generalized plane-stress problem, the constants aij there must 
be replaced by Pij. This is so because the generalized plane-stress 
problem is identical with the plane-strain problem if the constants ~1.. 
in the former are replaced by pij, where 

ZJ 

a. a. 
ptj ;A aij -- 2%$_ (i, j = 1, 2, 6) 

X= Y, Z are the yield stresses in tension in the principal orthotropic 
directions, T is the yield stress in shear relative to X-, y-axes. The 
relationship X = Y follows directly from the von Mises-Hill condition 
and from the assumption of the existence of a plastic potential for 
anisotropic materials [3 ] D 
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Note 2. At the price of some additional calculational complexities, 

one can obtain the formulas analogous to (1.7) and (2.1) for moxe general 
cases or anisotropy. 

4. Using (2.2) and (2.3) we obtain, now, several particular solutions 

of equilibrium of anisotropic bodies in the plastic region. It will be 
not necessary to determine the stress functions for each individual case. 

If 8 is known, then the stress components can easily be found 
the equilibrium equations (1.1). 

1) 8 = a = const. This is the simplest solution corresponding 
uniform stress field 

Q,=cosu+p, al,= P? xx. = 
1 

_ sina 
21/i--c 

Here and in the sequel the stresses are taken relative to the 

2Td/(l - c). 

quantity 

2) We seek now a solution in the form 8 = f?(y). From (2.2) we have 

from 

to the 

(c4.i) 

dzB -tan@ 3. 
d.9 ( ) ’ = 0 

dy 
or 8 =sin*’ (Ay+B) 

The state of stress corresponding to the above relationships is 
realized in a strip 

compressed by the rough plates. 

The stress components are 

(4.2) 

For c = 0 we obtain an analogous isotropic solution E4 ] . 

3) We seek now a solution in the form 8 = @($). Equations (2.4) will 
be transformed into the following: 

(cos 5 cos 2ql- i/l--’ c sin 6 sin 29) (- So-/ d’p2) + 

+ (cos B sin 29 + I/i!sin 9 cos 2af) zdfj f dp + 

+(sinecos2cp+111-ecosBsin2~)(dB/drp)a=O 

One possible solution of the above is 
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1 0 = tan-’ _ 
1/l - ctan2C$ 

This stress field is realized in a plastic wedge loaded uniformly 

along its edges. 

For c > 0 the stress components are 

Gr = 
-c sin2cp cos2q ,+ 1 

v (1 - cj (1 -c sin’! 2~) 
~ E(VZcp)SP 

2Vl-c 
(4.3) 

1 
6,= - 13 (I/i; (PI+ P, z,, = - $ 1 - c sin2 2cp 

21/1-c l-c 

For c < 0 the stresses are 

G, = 
-c sin 2~ cos 2 cp _-- 

V/(1 - c) (1 - c sin2 2~) kE *;‘p i/J 1 (4.4) 

s~=-+E $$=-a 
1 - c sin2 29 

l-c 

where E(k, 4) is a normal form of the Legendre elliptical integral of 

the second kind. For the case of an isotropic wedge (C = 0) Formulas 

(4.3) and (4.4) are expressed as follows [5 I: 

Gr = 6w = - Cp + p, Z,, = f 

5. To solve elasto-plastic problems it is necessary to know the rela- 

tionship between the plastic and elastic constants. If, for instance, at 

the elasto-plastic boundary the complex parameters suffer no jump (this 

seems to be quite a natural proposition, since, for the isotropic case, 

p1 and p2 are generally the same in plastic and elastic regions) then 

the following scheme may be proposed which would permit the continuity 

conditions to be satisfied over the elasto-plastic boundary [6 1. Let the 

elastic solution be [2 I 

F” = 2 Re [ F1” (zl) + Fz” (zz)] 

then the plastic solution can be represented as 

F--Fo(Z,,Zz; ;,. ;)+X(;lr;i; 

Moreover, we have 
F, = 2Re [ F1 (4 + FZ (41 
4 P -r 

-- 
2,. c2 ) 

(5.1) 

(5.2) 

(5.3) 
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where K = K(zI, t2; t,, 72) is a real function (cf. (1.7)). 

Let us introduce the following notation [2 1: 

253 

dF,” (zk) = @)kO (Zk)’ dFk ('k) = 

dzk dzk 
@k 1 @=1,2) 

On the elasto-plastic boundary y we require that the following in- 

equalities be satisfied: 

2Re 1%” (21) + 0’2” (z2)1, = me [@I (4 + @2 (22)ly, 

2% [PA’ (21) + p2@2’ (41, = me [IL@I (21) -I- ~2% (z2)ly, 

Thus, on y the equilibrium conditions are satisfied, and the elastic 

stress function F” 

function F. 

is continuously transformed into a plastic stress 

I would like to take this opportunity to draw attention to the work 

14 1 . The question of the plastic stress functions being biharmonic was 
considered in [‘I,8 1. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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